

APLICACIÓN INDUSTRIAL
DEL HIDRÓGENO
20 de Octubre de 2021

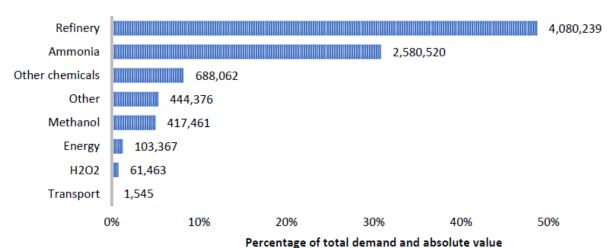
comillas edu

EL HIDRÓGENO COMO VECTOR ENERGÉTICO

José Ignacio Linares

Director de la Cátedra Fundación Repsol de Transición Energética (Comillas – ICAI) Investigador de la Cátedra Rafael Mariño de Nuevas Tecnologías Energéticas

HIDRÓGENO EN 2019 (ton/año)



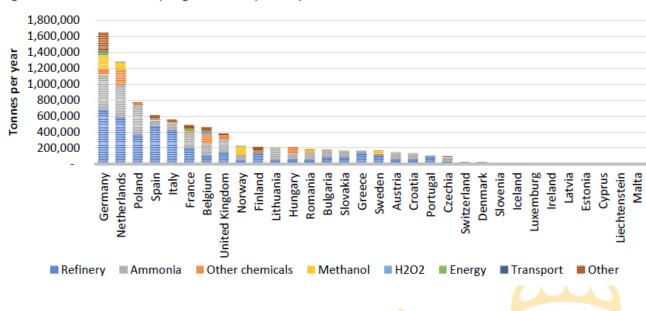


Figure 16. Total demand for hydrogen in 2019 by application

comillas.edu

Figure 17. Total demand for hydrogen in 2019 by country

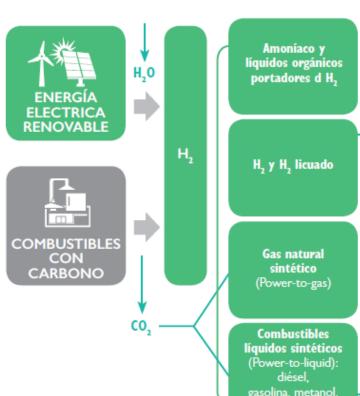
60%

VECTOR ENERGÉTICO

Industria

Integración

sectorial



ALMACENAMIENTO/TRANSPORTE

USOS FINALES

- NO es energía primaria, sino secundaria
- Vector energético: permite llevar formas de energía primaria a usos finales
- Admite conversión directa de energía (Energía química ⇒ Energía eléctrica), sin pasar por un ciclo termodinámico
- Otros vectores energéticos: electricidad, gasolina, GLPs,...

queroseno,...

PERIODOS CORTOS
Y VOLÚMENES
PEQUEÑOS

Depositos
 Materiales sólidos

PERIODOS LARGOS Y VOLÚMENES GRANDES

 Almacenamiento geológico natural

TRANSPORTE

ALMACENAMIENTO

DISTANCIAS CORTAS Y CAUDALES PEQUEÑOS

- Gasoductos (mezclado con gas natural o puro)
- Camiones

DISTANCIAS LARGAS Y CAUDALES GRANDES

- Gasoductos (puro mezclado GN)
- Tren, barco, camiones

Movilidad

Infraestructuras de transporte y almacenamiento de productos petrolíferos

[MITECO, Hoja de ruta del hidrógeno renovable, 2020]

- Gris: procedente de gas natural sin CCS
- Azul: procedente de gas natural con CCS
- Verde: procedente de renovables. Normalmente por electrólisis, pero no siempre.
- Amarillo: electrólisis a partir del mix nacional
- Rosa/púrpura: electrólisis de nuclear
- Marrón: procedente de carbón
- Turquesa: pirolisis de carbón o gas natural (residuo carbonoso, no CO₂)

		AGUA				Hidrocarburos, biomasa o carbón									
	FUENTES Y TECNOLOGÍAS PARA PRODUCIR HIDRÓGENO	Electrólisis ambiente	Electrólisis de alta temperatura	Ciclos termoquímicos	Reducción de óxidos metálicos	Biofotólisos	Fotoelectrólisis	Reformado	Reformado + CAC	Pirólisis, gasificación	Pirólisis, gasificación + CAC	Plasma	Plasma + CAC	Fermentación	Fermentación + CAC
S	Eólica														
RENOVABLES	Biomasa, RSU								(-)		(-)		(-)		(-)
	Solar térmica de concentración														
	Solar FV														
	Luz solar														
FÓSILES	Gas natural														
	Carbón														
NUCLEAR	Nuclear Gen II y III														
	Nuclear Gen IV														

[IRENA, Green Hydrogen Cost Reduction, 2020]

Figure ES1. A combination of cost reductions in electricity and electrolysers, combined with increased efficiency and operating lifetime, can deliver 80% reduction in hydrogen cost.

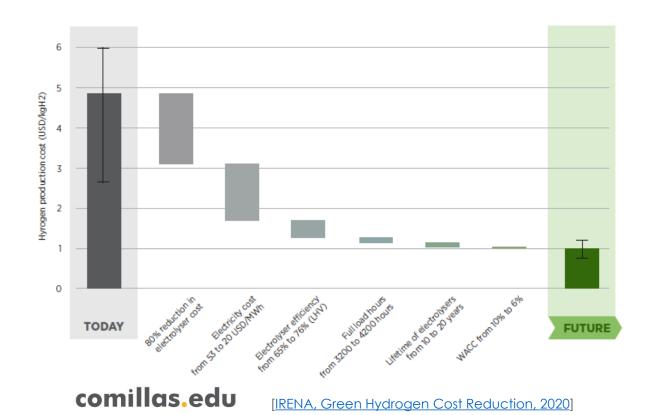
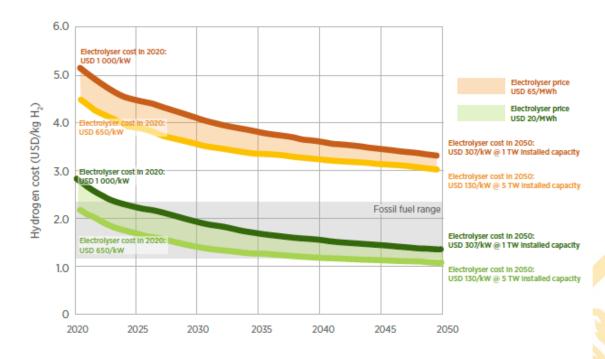



Figure ES2. Cost of green hydrogen production as a function of electrolyser deployment, using an average (USD 65/MWh) and a low (USD 20/MWh) electricity price, constant over the period 2020-2050.

Note: Efficiency at nominal capacity is 65%, with a LHV of 51.2 kilowatt hour/kilogramme of hydrogen (kWh/kg H2) in 2020 and 76% (at an LHV of 43.8 kWh/kg H2) in 2050, a discount rate of 8% and a stack lifetime of 80 000 hours. The electrolyser investment cost for 2020 is USD 650-1000/kW. Electrolyser costs reach USD 130-307/kW as a result of 1-5 TW of capacity deployed by 2050.

PRODUCCIÓN Electrólisis renovable

Key performance indicators for four electrolyser technologies today and in 2050.

		20	20					
	Alkaline	PEM	AEM	SOEC	Alkaline	PEM	AEM	SOEC
Cell pressure [bara]	< 30	< 70	< 35	< 10	> 70	> 70	> 70	> 20
Efficiency (system) [kWh/KgH ₂]	50-78	50-83	57-69	45-55	< 45	< 45	< 45	< 40
Lifetime [thousand hours]	60	50-80	> 5	< 20	100	100-120	100	80
Capital costs estimate for large stacks (stack-only, > 1 MW) [USD/kW _{el}]	270	400	-	> 2 000	< 100	< 100	< 100	< 200
Capital cost range estimate for the entire system, >10 MW [USD/kW _{et}]	500- 1000	700- 1400	-	-	< 200	< 200	< 200	< 300

	Eólica en isla	FV en isla	Neto (pool bajo)	Neto (pool alto)
wacc [%]	8	8	8	8
Vida [años]	31,8 a 20	38,9 a 20	11,7	11,7
Factor de	8,76 a 10,2	8,42 a 10,2	13,5	13,5
amortización [%]				
Uso [horas/año]	2.200	1.800	6.000	6.000
Coste FV o Eólica [€/MWhe]	25	25	- 25	- 25
Coste pool [€/MWhe]	0	0	50	80
Coste normalizado del hidrógeno [€/kg]	3,76 a 4,14	4,16 a 4,73	2,76	4,49

- El biometano es un gas renovable que se produce a partir de biogás, tras un proceso de upgrading y es indistinguible del gas natural
- El biogás procede de residuos: RSU, lodos de EDAR, residuos ganaderos y agrícolas, agroindustrias...
- Si se captura el CO₂ liberado se obtendrían emisiones negativas
- Hidrógeno dorado = Hidrógeno verde captura de CO₂ (azul)
- Capacidad de producción a partir de FORSU: 4 kg H₂/pax-año
 - Población España: 47,35 Mpax
 - Producción a partir de FORSU en España: 189.400 ton/año (31,6 % demanda)
 - Equivalencia en electrólisis (2000 heq/año): 5.493 MW = 5,5 GW (> 4 GW previstos en 2030 por Hoja de Ruta España)

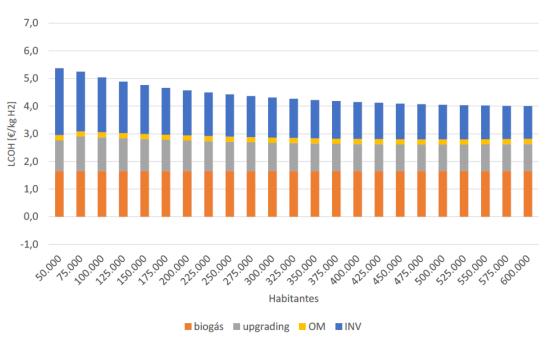


Figura 1. Costes normalizados de la producción de hidrógeno verde con SMR a partir de biometano procedente de FORSU, para diferentes poblaciones abastecidas por el vertedero [3].

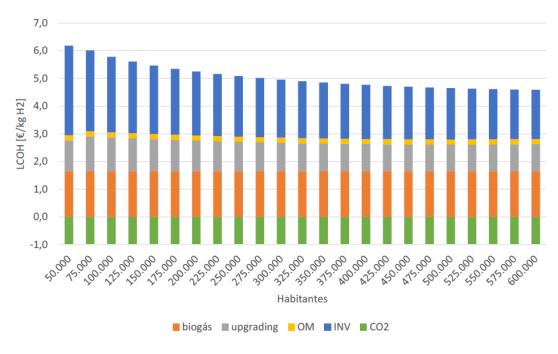
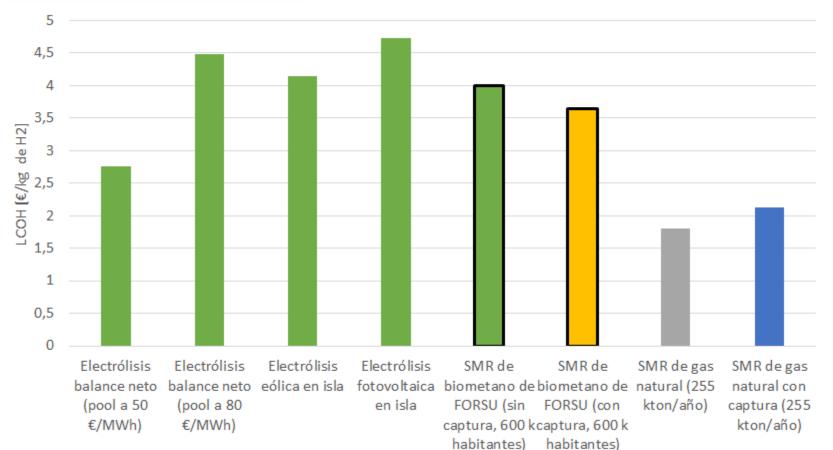


Figura 2. Costes normalizados de la producción de hidrógeno dorado con SMR y captura de CO₂ a partir de biometano procedente de FORSU, para diferentes poblaciones abastecidas por el vertedero [3].

<u>Linares, Moratilla, Arenas, VIII Congreso de Ingenieros de ICAI, 2021</u>


PRODUCCIÓN Hidrógeno dorado

comillas.edu

[Linares, Moratilla, Arenas, VIII Congreso de Ingenieros de ICAI, 2021]

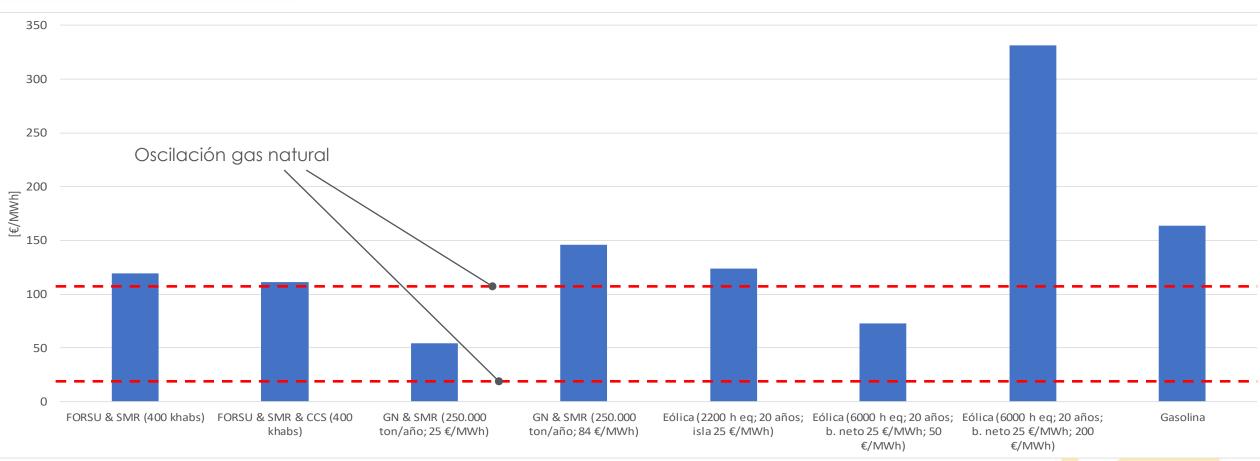
Repsol produce hidrógeno a partir de biometano en una refinería española

PSTREAM ONLINE / 05 OCTUBRE 202

Upstream Online, 5/10/2021

[HY.GEN, generación in-situ de H2 por SMR]

El hidrógeno producido a partir de la FORSU de la ciudad de Madrid sería capaz de abastecer el consumo de toda la flota de autobuses urbanos si todos fuesen de pila de combustible.


PRODUCCIÓN Comparativa de costes [€/MWh]

OBSERVATORIO

ALMACENAMIENTO

- Se trata de un gas muy ligero, con una baja densidad energética por unidad de volumen.
- Almacenamiento gaseoso:
 - Compresión hasta 300 ó 700 bar para aplicaciones de transporte.
 - Autoconsumo del orden del 10% de la energía contenida.
 - Se alcanzan densidades de 1,611 kWh/dm³
- Almacenamiento licuado.
 - Condensación a 20 K (-253 °C). Aplicación transporte pesado o logística de hidrógeno.
 - Autoconsumo del orden del 30% de la energía contenida.
 - Densidad de 2,375 kWh/dm³
- Ad(b)sorción/desorción: hidruros metálicos (sólidos), líquidos orgánicos (LOHC), ...
 - Adsorción (sólidos) o Absorción (líquidos)/desorción
 - Gran peso en los hidruros (aplicaciones estacionarias)
 - Almacenamiento en baja presión (5 a 30 bar); aprovechamiento de logística convencional (LOHC).

Volumen (ton/día)

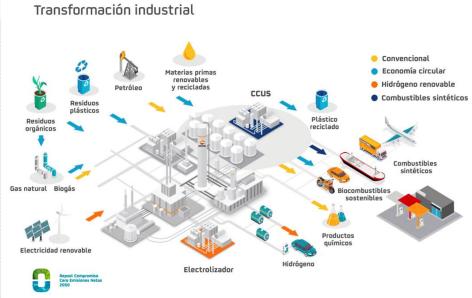
Figura 5. Costes de transporte de Hidrógeno en función de la distancia recorrida y volumen transportado (\$/kg). Fuente: Bloomberg NEF, Hydrogen Economy Outlook, March 30, 2020

Gasoductos / Hidroductos Transporte

- Camiones como hidrógeno comprimido (CH₂) o en portadores orgánicos (LOHC), para volúmenes y distancias pequeñas (Hidroductos virtuales)
- Hidroductos para volúmenes medios/grandes, hasta 3000 km
- Barcos para transporte intercontinental (en forma de amoniaco o licuado)
- Mezclado con gas natural (hasta 20%) en volumen)
- Fragilización de conductos: recubrimientos internos

Buques 1.000 Grande 0.05 - 0.100.10 - 0.58Gasoductos / Hidroductos Distribución Buaues 100 Medio NH. 0.05 -0.06 0.06 - 0.220.22 - 1.82< 3.00 10 Camiones LOHC Pequeño 3.87 - 6.70 0.65 - 0.760.68 - 1.73 Muy No disponible 3.87 - 6.70 10 100 1.000 10.000 Local Urbano Interurbano Intercontinental Distancia (km) Liquidos orgánicos portadores de hidrógeno H_a comprimido Amoniaco

- Materia prima:
 - Actualmente se consumen 500.000 ton/año en España
 - Refinerías, químicas, metalúrgicas
 - Origen normalmente gris
 - objetivo de la Hoja de Ruta España: 30% verde para 2030
 - objetivo Fit for 55 (UE): al menos 50% del consumido en la industria ha de ser verde para 2030
- Industrias con alta demanda de temperatura
 - Difícil electrificación
 - Hidrógeno como combustible
- Integración de la industria en la economía circular
 - Producción de hidrógeno a partir de biometano de RSU, lodos de EDAR y residuos ganaderos o agroindustrias
 - Industria en comunidad
- Almacenamiento estacional



- Nuevo paradigma: Industria en comunidad
- La industria produce:
 - Bienes vendibles
 - Empleo
 - Residuos revalorizables (redes de distrito)
- La localidad próxima produce:
 - Residuos que son materia prima para producir gases renovables, entre ellos hidrógeno

ACTUAL

FUTURO

De los procesos y materias primas actuales...

... a refinerías bajas en emisiones

comillas edu

[Barreiro, Transformación Industrial: Descarbonización y Circularidad, Jornada Cátedra Fundación Repsol de Transición Energética, 2021]

APLICACIONES Generación distribuida

BOSCH, near term SOFC system

- Fabricante alemán (BOSCH)
- Comercializable en 2022
- Pila de combustible SOFC de 10 kW
- Solución modular, apilable
- Eficiencia:
 - 60% eléctrica
 - 25% térmica
- Alimentación:
 - Hidrógeno
 - Biogás
 - Gas natural/biometano
- Experiencias anteriores con PAFC (experiencia UTC)

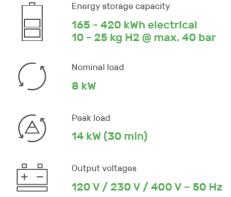
Stack of several hundred fuel cells Recirculation Reformer Inverter Heat exchanger

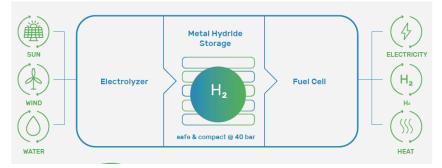
APLICACIONES Almacenamiento (P2G2P)

- Producto ya comercial
- Almacenamiento: 40 kWh
- Potencia: 5 kW
- Tensión: 48 V DC
- Hidruros metálicos (30 años de vida útil)
- Integra:
 - electrolizador a partir de FV con batería
 - Hidruros metálicos
 - Pila de combustible para descarga
- Justificado en entornos remotos; en general es más eficiente
 P2G y usar el hidrógeno para usos directos (movilidad, materia prima...) que hacer P2G-G2P [He et al., Energy Environ. Sci. 2021, 14, 4635]

LAVO, Hydrogen Battery System

CÁTEDRA **DE TRANSICIÓN ENERGÉTICA**




APLICACIONES

Almacenamiento (P2G2P/G

GKN Hydrogen

El almacenamiento el hidrógeno de electricidad (P2G2P) a gran escala es más económico que las baterías al no tener que aumentar el número de celdas, sólo el depósito de hidrógeno. [Pratt, 2021]

CONCLUSIONES

- En la descarbonización no existe la "bala de plata". Hay muchas soluciones y cada una tiene su nicho. Es preciso considerar la neutralidad tecnológica y ser conscientes de que descarbonización no es sinónimo de electrificación.
- El hidrógeno abre una oportunidad a la integración de renovables, facilitando el almacenamiento estacional y una diversidad de usos.
- El hidrógeno también abre la puerta a la economía circular mediante la revalorización de residuos orgánicos.
- La industria puede descarbonizarse mediante hidrógeno verde:
 - Reemplazando el hidrógeno gris como material prima
 - Reemplazando combustibles fósiles en procesos de combustión
 - Combinándose con CO₂ capturado de la industria produciendo eco-combustibles (neutros en carbono), que facilitan el uso de infraestructuras y equipos actuales

Gracias por su atención

www.comillas.edu/catedra-rafael-marino

linares@comillas.edu

